# **Pc-Lab 2000 LT**<sup>™</sup>

#### GETTING STARTED / INSTRUCTIONS EN BREF / RATGEBER / INSTRUCCIONES BREVES

#### PCSGU250











0

OSCILLOSCOPE
FUNCTION GENERATOR
SPECTRUM ANALYSER
TRANSIENT RECORDER
BODE PLOTTER

Vellemen M

- *FR* Consultez notre site <u>www.velleman.eu</u> pour plus d'information sur votre appareil.
- NL Raadpleeg onze web site <u>www.velleman.eu</u> voor vertalingen en meer informatie van dit product.
- *UK* Please check our web site <u>www.velleman.eu</u> for more info on this product.
- *S* Bruksanvisning och annan information kan finnas på <u>www.velleman.eu</u>.
- SF Käyttöohje sekä muuta informaatiota löytyy osoitteesta <u>www.velleman.eu</u>.
- La traduzione di questo manuale e tutte le informazioni con cernenti l'unità possono essere trovate sul <u>www.velleman.eu</u>.
- *DK* Oversættelsen af denne manual, samt alle øvrige informationer vedrørende enhederne, kan findes på <u>www.velleman.eu</u> .
- **D** Anderen Informationen über diese Geräte finden Sie auf <u>www.velleman.eu</u>.
- SP Otra información sobre los dispositivos se encuentran en <u>www.velleman.eu</u>
- P A tradução deste Manual e toda a informação referente às uni dades pode ser encontrada em <u>www.velleman.eu</u>.

www.velleman.eu

http://forum.velleman.eu/

#### English : Welcome ...... 4 Français : Le diagramme de Bode ..... Deutsch: Zusätzliche Information..... Español: El Bode plotter ..... Informaciones adiciongles.....

#### Welcome



### Welcome to the world of Pc-Lab2000LT

For the PCSGU250 unit, a complete USB-powered lab-in-a-box! Feature-packed PCLab2000LT software for two channel oscilloscope, spectrum analyzer, recorder, function generator and Bode plotter. Integrated signal wave editor and automated sequence generator, using file or external input.

The hardware is not necessary to evaluate the software in Demo mode.

#### General information

- markers for amplitude/voltage and frequency/time
- input coupling: DC, AC and GND
- 8 bit resolution
- storage of display and data
- supply from USB port (500mA)\*
- dimensions: 205 x 55 X 175 / 8,2 x 2,2 x 7"

#### Spectrum analyser:

- frequency range: 0 .. 120Hz to 12MHz
- linear or logarithmic timescale
- operating principle: FFT (Fast Fourier Transform)
- FFT resolution: 2048 lines
- FFT input channel: CH1 or CH2
- zoom function

#### Transient recorder:

- timescale: 20ms/Div to 2000s/Div
- max record time: 9.4hour/screen
- automatic storage of data
- automatic recording for more than 1 year
- max. number of samples: 100/s
- min. number of samples: 1 sample/20s

#### Function generator

- frequency range: sine from 0.005Hz to 1MHz
- square and triangle from 0.005Hz to 500kHz
- extended waveform library
- amplitude range: 100mVpp to 10Vpp @ 1KHz// 600ohm load / output impedance: 50ohm

#### Oscilloscope

- $\bullet$  bandwidth: two channels DC to 12 MHz  $\pm 3dB$
- input impedance: 1 Mohm / 30pF
- maximum input voltage: 30V (AC + DC)
- time base: 0.1µs to 500ms per division
- input range: 10mV to 3V/division
- readouts: True RMS, dBV, dBm, p to p, Duty cycle, Frequency...
- record length: 4K samples / channel
- sampling frequency: 250Hz to 25MHz
- sample history and digital grab function

#### Bode plotter

- Automated sync between oscilloscope and generator
- Frequency range: 1kHz , 10kHz, 100kHz, 1MHz
- Frequency start: 10Hz, 100Hz, 1kHz, 10kHz

### How to install Pc-Lab2000LT

Minimum system requirements :

- Windows<sup>™</sup>2000/XP/Vista (\*).
- VGA display card (1024x768 recommended)
- 10MB free hard disk space.
- Mouse or pointing device.
- CD or CD/DVD Rom player.
- Free USB port (1.1 or 2.0)

Insert the CD into your drive.

If the "setup" does not start automatically, browse the CD and run the **SETUP.EXE** program.

Select "Install Pc-Lab2000LT"

An install wizard will guide you trough the complete installation procedure. Shortcuts to the *Pc-Lab2000LT* software and the help files are automatically generated.



(\*) Note: You will need local Administrator privileges to successfully complete the installation, contact your system administrator for assistance. See also the "ReadME" file in the installed folder.

\* Microsoft Windows™ 2000/XP/VISTA (\*) are registered trademarks

Download the latest version from <u>www.velleman.eu</u>

### Hardware Set-up (Close all programs before continuing)

#### USB driver install:

- Connect your PCSGU250 unit to a free USB port
- Follow the on screen driver installation procedure.
- If Windows asks for Windows Update, select "not at this time"
- Install the driver from a specific location, then browse on the CD and select the folder D:\PCSGU250Driver. (press "next")
- If Windows indicate "has not passed Windows logo testing..." select "Continue Anyway".
- After finishing, you can check the driver installation in the Device Manager list.
- It is possible that the PC asks to "restart" for proper installation

**Note:** In case of malfunction, remove the USB driver in the control panel and install the D:\PCSGU250Driver\PCSGU250Driver\_WinUSB after reconnecting the device.

#### Starting the software :

Locate the *Pc-Lab2000LT* software shortcuts (programs.. *Pc-Lab2000LT*...)

Click the *context* icon to start the main program. *"loading, please wait"* should appear. Then the power LED goes ON on the unit. (\*)

The main program automatically launches the Oscilloscope and generator screen, which is shown on the next pages. Should you receive an error (ex. If no unit is detected), disconnect and reconnect the USB cable and try again or, if you want to access the demo mode (no unit is needed) :

- Click the Options menu, and select 'Hardware Setup' > demo mode

Note: - At first time power-up, the oscilloscope will calibrate itself automatically.

- The actual screens can differ from the one shown in this manual.

### **velemen**i

### The Function Generator Module :

*What ?*: Most common waveforms are accessible at the touch of a button. A library with special functions is provided, as well as a Wave Editor, to create virtually any kind of waveform.



#### How ? :

- Click on the desired waveform (1).
- Select the desired frequency range (2).
- Set the exact frequency by sliding (3) or click the frequency readout (4) and enter a value.
- Adjust the offset (5)
- Adjust the amplitude (6) (values can be entered by clicking the offset and amplitude readout)
- (7) shows a simulated preview of the output waveform

#### The 'More Functions'- button :

The 'More Functions'-button gives access to special purpose waveforms such as arbitrary waveforms, frequency sweeps and DC. It also gives access to the waveform library.

Note: The Probe test button (8) makes the generator output a signal, suitable for your scope probe calibration at X10 setting.

|     | Ophoes Taols     |             |                    |             |
|-----|------------------|-------------|--------------------|-------------|
|     | Outlater         | TineOv.     | Fieldersy Fielders |             |
|     |                  | StOm 20trel | OU COD             |             |
|     | 12.945.5 The     | 100m Ster   | SWEEP              |             |
| 1   | Nors Functions 🔯 | 20mm 30mm   | OF Lin             | C Log       |
|     |                  | See 2m      | Stat 1000          | Be          |
|     | - Mr Sechille    | Ine 0.5ne   | Stop 10000         | Hz          |
| .   |                  | £2m 0.1me   | Tate 1             | Sec.        |
| 1   | 1 AV Smeet       | 50xe 20xe   |                    |             |
|     |                  | 324 50      | Stat Sweep         |             |
| 2   | Loray novelistic | 2n lur      |                    | _           |
| ~   |                  | 05.0 0.2m   |                    | MC62        |
|     |                  | 0.00        |                    |             |
|     | Occe             |             | +10                |             |
|     |                  | Bin         |                    |             |
|     | Veni 1419 52005  |             |                    |             |
|     | Hatay            | bege        | - KVVVV            | ANNO I      |
|     | Tigge            |             |                    |             |
| · / | 0+00 01 01       | -914-       |                    |             |
|     | Source DZ DQ     |             | - Ditted A         | npikude - [ |
|     |                  |             | 0.00               | 5.03        |
|     | Edge 🗾 🚵         |             | E V                | 100 -       |
|     | Street Street    |             |                    |             |
|     | Line             |             |                    | 14          |



8

### The Oscilloscope module :

*What ?*: The Oscilloscope module offers a feature-packed, easy to use digital storage oscilloscope.



#### How ? :

- Connect the circuit under test to the scope input (observe the max. input rating of the scope!) or connect to the generator output.
- Start measuring with "trigger off" (6)
- Press 'RUN' (7)
- Choose the desired channel and volts/div setting or press "Auto-set" (2)
- Choose the appropriate time/div setting (8)

#### To enable triggering :

- Select trigger channel (5)
- Select trigger edge (4)
- Set trigger to 'ON' (6)
- Set trigger level by sliding (3). The trigger mark is displayed on the left hand side of the signal display (1)

### The Spectrum Analyser Module :

*What* ? : Powerful feature which allows visualization of the frequency spectrum of a signal, using FFT (Fast Fourier Transform) analysis.

Malament 1



#### How ? :

- Connect the scope input to the circuit under test. (observe the max. input rating of the scope!) Or use the internal generator output.
- First observe the signal on the scope screen (see previous page).
- Check that the signal is not over the maximum of the screen.
- Start the spectrum analyzer.
- Press 'RUN' (1)
- Select the appropriate frequency range. Make sure your setting will capture any signal change of interest (3).
- If wanted set the appropriate channel and volts/div setting (2)

### The Transient Recorder Module :

*What ?* : Record occasional events and log slow changing processes automatically, e.g. battery charge cycles, temperature changes,... or track intermittent faults in electronic circuits. Automatic data storage allows over one year of continuous recording !



#### How ? :

- Connect the scope input to the circuit under test. (or the internal generator at a low frequency)
- Select the appropriate channel and volts/div (or volt range) setting (1).
- Select the appropriate time/division setting (3).
- Press RUN (2) to start recording.
- Press RUN again , to stop the measurement, or use the "Single" button to make a single screen measurement.

For continuous recording with auto-save to your HD, select 'AutoSave Data' from the 'File'-menu.

#### Notes:

- *The second and a second a sec*
- Events happening between two sample acquisitions will be missed if a too slow time/div is set

### The Bode plotter module :

*What* ? : Due to the unique scope and generator combination, an automated Bode plot function is possible. This results in a powerful tool for amplifier or filter measurements.



#### How ? :

- Enable the Circuit Analyser window (1)
- Connect the scope CH1 input to the output of the circuit or unit under test.
- Connect the generator output to the input of the circuit or unit.
- Adjust the generator output (2) to a suitable level.
- Adjust the setting of the Bode plot module like Volt range (3) Volt scale, frequency start and stop range (4)...
- Press 'Start' (5) and observe the screen and measurement window (6)
- If the signal is out of the screen range, adjust the Voltage range or generator output level.

#### Extra's

### Some useful extra's : (see also the help file)



In "Tools" Open the Wave editor to generate your own waveform. In this example: level 10: 5 times, level 50: 20 times ...

| Waveform Parameters     |            |            |
|-------------------------|------------|------------|
| Amplitude:              | CH1        | CH2        |
| DC Mean                 | 0.63 V     | -0.03 V    |
| 🗹 Max                   | 1.59 V     | 1.47 V     |
| Min                     | -0.28 V    | -1.41 V    |
| Peak-to-Peak            | 1.88 V     | 2.88 V     |
| 🗹 High                  | 1.53 V     | 1.25 V     |
| ✓ Low                   | -0.22 V    | -1.19 V    |
| Amplitude               | 1.75 V     | 2.44 V     |
| AC RMS                  | 0.66 V     | 1.19 V     |
| AC dBV                  | -3.66 dBV  | 1.48 dBV   |
| AC dBm                  | -1.44 dBm  | 3.70 dBm   |
| AC+DC RMS               | 0.92 V     | 1.19 V     |
| AC+DC dBV               | -0.757 dBV | 1.48 dBV   |
| AC+DC dBm               | 1.46 dBm   | 3.70 dBm   |
| Timing:                 |            |            |
| Duty Cycle              | 49.5 %     | 50.0 %     |
| Positive Width          | 1.19 ms    | 1.20 ms    |
| Negative Width          | 1.21 ms    | 1.20 ms    |
| Rise Time               | 0.680 m*   | 0.112 ms   |
| Fall Time               | 0.672 m*   | 0.104 ms   |
| Period                  | 2.40 ms    | 2.40 ms    |
| Frequency               | 0.417 kHz  | 0.417 kHz  |
| Phase                   | 20.0 deg   | -20.0 deg  |
| Select All Unselect All | ) (        | Close Help |

Open the waveform parameters window to see extended waveform parameters

| 0 110p              | Eurotion         | Freq                        | Offset                | Voltage             | Time                | File name   |                                                 |
|---------------------|------------------|-----------------------------|-----------------------|---------------------|---------------------|-------------|-------------------------------------------------|
| Open<br>Run<br>Exit | 1<br>2<br>4<br>0 | 125.5<br>1000<br>400<br>700 | -4.5<br>2.5<br>0<br>0 | 7.5<br>10<br>8<br>7 | 10<br>5<br>10<br>10 | burst01.lib | Source Data File C Serial Port File Serial Port |
| Running             | <b>;</b> 0       | 0<br>Hz                     | v                     | 8<br>Vpp            | 0<br>Sec            |             |                                                 |

In "Tools" Open the Wave Sequence panel to create automated wave forms coming from file or serial port data scripts.



First "Stop" the scope. Click the history button to open the history scroll panel. This function will record up to 1000 signals. Save and open the history file, then use your mouse scroll function to easy scroll through the signal history. Now start (RUN) the scope.



It is possible to add some text and wave form parameters on the signal screen.

Right click on the signal screen to open a window and add your text.

### Introduction : Le monde du Pc-Lab2000LT

Destiné au PCSGU250, un petit labo USB complet !

Logiciel PcLab2000-LT puissant pour oscilloscope deux canaux, analyseur de spectre, enregistreur, générateur de fonction et diagramme de Bode. Éditeur d'ondes intégré et séquenceur automatisé via fichier ou entrée PC.

Ŧ L'utilisation du logiciel en mode de démonstration ne nécessite pas de périphérique.

#### Informations générales

- ce/temps
- raccordement à l'entrée : CC, CA et GND
- résolution 8 bits
- possibilité de mise en mémoire de l'affichage et des données
- alimentation par port USB (500mA)\*
- dimensions : 205 x 55 x 175 mm

#### Analyseur de spectre

- plage de fréquence : 0 .. 120 Hz ~ 12 MHz
- échelle de temps linéaire ou logarithmique
- principe de fonctionnement : FFT (Fast Fourier Transform ou transformée de Fourier rapide)
- résolution FFT : 2048 lianes
- canal d'entrée FFT : CH1 ou CH2
- zoom

#### Enregistreur de signaux transitoires

- échelle de temps : 20 ms/div ~ 2000 s/div
- temps d'enregistrement max. : 9,4 h/écran
- mise en mémoire automatique des données
- enreaistrement automatique pendant plus d'un an
- nombre max d'échantillons · 100/s
- nombre min, d'échantillons : 1 échantillon/20s

#### Générateur de fonction

- margueurs pour amplitude/tension et fréquen- plage de fréquence: sinusoïde de 0,005Hz ~ 1MHz
  - carré et trianaulaire de 0.005Hz ~ 500kHz
  - formes d'onde étendues
  - amplitude:  $100 \text{mVpp} \sim 10 \text{Vpp}$  @  $1 \text{kHz} / 600 \Omega /$ impédance de sortie:  $50\Omega$

#### Oscilloscope

- largeur de bande : 2 canaux CC à 12MHz ± 3dB
- impédance d'entrée : 1ΩM/30 pF
- tension d'entrée max. : 30V (CA + CC)
- base de temps :  $0,1\mu s \sim 500 ms$  par division
- plage d'entrée : 10mV ~ 3V par division
- affichages : TRMS, dBV, dBm, P2P, rapport de cycle, fréquence...
- Ionqueur d'enregistrement : 4.000 échantillons/ canal
- fréquence d'échantillonnage : 250Hz ~ 25MHz
- historique d'échantillonnage et fonction de capture d'image numérique

#### Diagramme de Bode

- synchronisation automatique entre l'oscilloscope et le aénérateur
- plage de fréquence : 1kHz, 10kHz, 100kHz, 1MHz
- départ de fréquence : 10Hz, 100Hz, 1kHz, 10kHz

Remarque : Afin d'éviter tout blocage de logiciel, l'utilisation d'un hub USB est déconseillé SPÉCIFICATIONS SOUS RÉSERVE DE MODIFICATIONS - DLL disponible pour des développements personnalisés



### Comment installer le Pc-Lab2000LT

Système requis

- Windows<sup>™</sup> 2000/XP/Vista (\*)
- carte vidéo VGA (1024x768 recommandé)
- espace disque dur 10 Mo
- souris ou pointeur
- lecteur CD ou CD/DVD
- port USB (1.1 ou 2.0)

Insérer le CD dans le lecteur.

Si le CD ne démarre pas automatiquement, ouvrir le répertoire du CD et lancer le fichier "SETUP.EXE".

Sélectionner "Pc-Lab2000LT".

L'assistant d'installation vous guidera dans le processus d'installation. Les raccourcis vers le logiciel *Pc-Lab2000LT* et des fichiers de secours sont automatiquement générés.



(\*) **Remarque :** Enregistrez-vous comme administrateur afin de compléter le processus d'installation ou contactez votre administrateur systèmes pour plus de renseignements. Voir également le fichier "ReadME" dans le dossier installé.

\* Microsoft Windows<sup>™</sup> 2000/XP/VISTA (\*) est une marque déposée.

Téléchargez la version à jour sur <u>www.velleman.eu.</u>

## Connexion de périphérique (fermez tous les programmes avant de continuer)

#### Installation du pilote USB

- Raccordez votre PCSGU250 à un port USB libre.
- Suivez le processus d'installation affiché à l'écran.
- Si Windows<sup>®</sup> vous propose de mettre à jour votre version de Windows<sup>®</sup>, choisissez "Non, pas cette fois-ci".
- Installez le pilote et sélectionner "D:\PCSGU250Driver" dans le répertoire du CD. Cliquez "Suivant".
- Si Windows<sup>®</sup> indique "Ce périphérique n'est pas reconnu. Il ne sera pas installé. Veuillez trouver un autre pilote", sélectionnez "Voulez-vous continuer ?".
- Une fois le pilote installé, contrôlez le pilote dans la liste du gestionnaire des périphériques.
- Redémarrez votre ordinateur si nécessaire.

**Remarque :** En cas de fonctionnement entravé, désinstaller le pilote USB de la barre des tâches et installer "D:\PCSGU250Driver\PCSGU250Driver\_WinUSB" après reconnexion du périphérique.

#### Lancement du logiciel:

Localiser le raccourci "*Pc-Lab2000LT*".

Cliquez sur l'icône pour lancer le logiciel. Le message **"loading, please wait**" s'affiche. Une fois le logiciel chargé, la DEL s'allume. (\*)

Le logiciel affiche automatiquement l'oscilloscope et le générateur de fonction (à la page suivante). En cas d'erreur (unité non détectée), déconnectez et reconnectez le câble USB, et réessayez. Pour accéder au mode de démonstration (utilisation sans périphérique), cliquez "Options", "Hardware Setup" et ensuite "Demo Mode".

REMARQUES : - L'oscilloscope sera automatiquement étalonné lors de la première mise en marche - Les captures d'écran peuvent différer de la réalité.



### Le générateur de fonction

#### Quoi ?

Les ondes les plus communes sont accessibles depuis un seul bouton. Vous disposez d'un répertoire contenant des fonctions spéciales, tout comme un éditeur d'ondes afin de créer toute sorte d'ondes.



#### Comment ?

- Cliquez sur la forme d'onde souhaitée (1).
- Sélectionnez la plage de fréquence (2).
- Déterminez la fréquence à l'aide de la glissière (3) ou en saisissant une fréquence dans le champ (4).
- Réglez l'offset (5).
- Réglez l'amplitude (6). (saisissez les valeurs en cliquant dans le champ "Offset" et "Amplitude")
- Le diagramme (7) affiche une simulation de l'onde.

#### Plus de fonctions "More Funct."

Le bouton "More Funct." vous donne accès à des ondes spéciales telles que des ondes arbitraires, balayages de fréquence, CC, ainsi qu'au répertoire des formes d'onde.

Remarque : Le bouton "Probe Test" (8) permet au générateur de produire un signal de sortie pour l'étalonnage de la sonde oscilloscope X10.



### L'oscilloscope

#### Quoi ?

Cet outil est un oscilloscope numérique de stockage complet et facile à utiliser.



#### Comment ?

- Connectez le circuit à tester à l'entrée de l'oscilloscope (observez la valeur d'entrée max. de l'oscilloscope !) ou à la sortie du générateur.
- Mesurez avec "Trigger Off" (6).
- Cliquez sur "Run" (7).
- Choisissez le canal et les volts/div, ou cliquez "Autoset" (2).
- Choisissez le temps/div (8).

#### Démarrage :

- Sélectionnez le canal de démarrage (5).
- Sélectionnez le flan de démarrage (4).
- Cliquez sur "Trigger On" (6).
- Paramétrez le niveau avec la glissière (3). Le niveau est affiché sur la gauche du diagramme (1).

🐼 vellemen 🗤

### L'analyseur de spectre

#### Quoi ?

Outil puissant permettant de visualiser le spectre de fréquence d'un signal à l'aide d'une analyse FFT (Fast Fourier Transform).



#### Comment ?

- Connectez l'entrée de l'oscilloscope au circuit à tester (observez les valeurs maximales d'entrée de l'oscilloscope) ou utilisez la sortie du générateur interne.
- Observez le signal sur l'écran de l'oscilloscope (référez à la page précédente).
- Assurez-vous que le signal n'excède pas la valeur maximale de l'écran.
- Démarrez l'analyseur de spectre.
- Enfoncez "Run" (1).
- Sélectionnez la plage de fréquence appropriée. Assurez-vous que la valeur choisie soit assez large afin qu'elle puisse capturer le changement de signal souhaité (3)
- Choisissez le canal et les volts/div si nécessaire (2).

### Nelemen im

L'enregistreur de signaux transitoires

### L'enregistreur de signaux transitoires

#### Quoi ? :

Enregistrez automatiquement des événements occasionnels et des modifications lents, p.ex. le cycle de charge d'une batterie, l'évolution de la température... ou dépister des fautes intermittentes dans un circuit. Les données sont automatiquement mises en mémoire. Le Pc-Lab2000LT vous permet d'enregistrer des données pendant 1 an !



#### Comment ?

- Connectez l'entrée au circuit à tester (ou au générateur interne à une basse fréquence).
- Sélectionnez le canal et les volts/div (ou plage de tension) appropriés (1).
- Sélectionnez le temps/division approprié (3).
- Enfoncez "Run" (2) pour enregistrer.
- Renfoncez "Run" pour interrompre l'enregistrement ou enfoncez "Single" pour effectuer une mesure d'écran simple.

Sélectionnez "AutoSave Data" dans le menu "File" pour enregistrer en mode continu avec mise en mémoire automatique sur disque dur.

#### Remarque :

- Pendant l'enregistrement, les écrans peuvent différer de la mesure actuelle.
- L'interaction entre les deux échantillons ne sera pas mesurée si la valeur temps/div choisie est trop basse.



### Le diagramme de Bode

#### Quoi ?

Il est possible de mesurer le niveau d'amplification ou de filtrage grâce au traceur de Bode intégré.



### Comment ?

- Ouvrez la fenêtre "Circuit Analyser" (1).
- Connectez l'entrée du canal CH1 de l'oscilloscope à la sortie du circuit ou de l'unité à tester.
- Connectez la sortie du générateur à l'entrée du circuit ou de l'unité.
- Réglez la sortie du générateur (2) à un niveau approprié.
- Paramétrez le traceur de Bode au niveau de "V Range" (3), "Vertical Scale", "Frequency Range" et "Frequency Start" (4)...
- Enfoncez "Start" (5) et observez les valeurs dans la fenêtre de mesure (6).
- Ajustez la valeur sous "V Range" ou le niveau de sortie du générateur si le signal est hors de la portée de l'écran.

### Informations supplémentaires (consultez les fichiers de secours)



Ouvrez l'éditeur "Wave Editor" sous "Tools" pour générer votre propre forme d'onde. Dans cet exemple : niveau 10 : 5 temps, niveau 50 : 20 temps...

| Amplitude:       | CH1        | CH2       |
|------------------|------------|-----------|
| Z DC Mean        | 0.63 V     | -0.03 V   |
| Max              | 1.59 V     | 1.47 V    |
| Min              | -0.28 V    | -1.41 V   |
| Peak-to-Peak     | 1.88 V     | 2.88 V    |
| V High           | 1.53 V     | 1.25 V    |
| ✓ Low            | -0.22 V    | -1.19 V   |
| Amplitude        | 1.75 V     | 2.44 V    |
| AC RMS           | 0.66 V     | 1.19 V    |
| AC dBV           | -3.66 dBV  | 1.48 dBV  |
| AC dBm           | -1.44 dBm  | 3.70 dBm  |
| AC+DC RMS        | 0.92 V     | 1.19 V    |
| AC+DC dBV        | -0.757 dBV | 1.48 dBV  |
| AC+DC dBm        | 1.46 dBm   | 3.70 dBm  |
| Timing:          |            |           |
| Duty Cycle       | 49.5 %     | 50.0 %    |
| Positive Width   | 1.19 ms    | 1.20 ms   |
| V Negative Width | 1.21 ms    | 1.20 ms   |
| Rise Time        | 0.680 ms   | 0.112 ms  |
| Fall Time        | 0.672 ms   | 0.104 ms  |
| Period           | 2.40 ms    | 2.40 ms   |
| Frequency        | 0.417 kHz  | 0.417 kHz |
| Phase            | 20.0 deg   | -20.0 deg |

Ouvrez la fenêtre " Waveform Parameters" pour afficher les paramètres de la forme d'onde.

| Open<br>Run<br>Exit | Function<br>1<br>2<br>4<br>0 | Freq.<br>125.5<br>1000<br>400<br>700 | Offset<br>-4.5<br>2.5<br>0<br>0 | Voltage<br>7.5<br>10<br>8<br>7 | Time<br>10<br>5<br>10<br>10 | File name<br>burst01.lib | K N | Source Data<br>File<br>C Serial Po |
|---------------------|------------------------------|--------------------------------------|---------------------------------|--------------------------------|-----------------------------|--------------------------|-----|------------------------------------|
| Bunning             | 0                            | 0<br>Hz                              | 0                               | 8<br>Vpp                       | 0<br>Sec                    |                          |     |                                    |

Ouvrez la fenêtre "Wave Sequence" sous "Tools" pour créer des formes d'onde automatiques provenant d'un fichier ou d'un port sériel.



Arrêtez l'oscilloscope. Cliquez sur "History" pour dérouler un menu. Mémorisez et ouvrez le fichier de l'historique, et défilez avec le la roulette sur la souris. Démarrez l'oscilloscope en cliquant sur "Run".



Vous pouvez ajouter un texte et des paramètres dans le diagramme.

Cliquez sur le diagramme avec le bouton droit de la souris pour ouvrir une fenêtre textuelle.

### Einführung: entdecken Sie die Welt vom Pc-Lab2000LT

#### Ein komplettes USB-Laboratorium!

Leistungsstarke PcLab2000-LT-Software für 2-Kanal-Oszilloskop, Spektrumanalysator, Transientenrecorder, Funktionsgenerator und Bode Plotter. Kreieren Sie über Datei oder externen PC-Eingang Ihre eigenen Wellenformen mit dem mitgelieferten Signal-Wellenform-Editor und dem automatisierten Sequenzer.

#### Allgemein

- Markierungen für Amplitude/Spannung und Frequenz/Zeit
- Eingangskopplung: DC, AC und GND
- Auflösung von 8 bits
- Speicherung von Schirmabbildung und Daten
- Stromversorgung über USB-Port (500mA)
- Abmessungen: 205 x 55 X 175 mm

#### Spektrumanalysator

- $\bullet$  Frequenzbereich: 0 .. 120 Hz  $\sim$  12 MHz
- linearer oder logarithmischer Zeitmaßstab
- Funktionsweise: FFT (Fast Fourier Transform)
- FFT-Auflösung: 2048 Zeilen
- FFT-Eingangskanal: CH1 oder CH2
- Zoom-Funktion

#### Transientenrecorder

- Zeitmaßstab: 20 ms/div ~ 2000 s/div
- max. Aufnahmezeit: 9.4 Stunden pro Schirminhalt m
- automatische Datenspeicherung
- automatische Aufnahme bis zu mehr als 1 Jahr
- max. Abtastgeschwindigkeit: 100/s
- min. Abtastgeschwindigkeit: 1 Sample/20s

#### Funktionsgenerator

Frequenzbereich: Sinuswelle von 0,005 Hz ~ 1 MHz

wellemon"

- Rechteck-, Dreieckwelle von 0,005 Hz ~ 500 kHz
- umfangreiche Wellenformbibliothek
- Amplitude: 100 mVpp  $\sim$  10 Vpp @ 1 kHz/600  $\Omega/$  Ausgangsimpedanz: 50  $\Omega$

#### Oszilloskop

- Bandbreite: 2-Kanal DC bis 12 MHz ±3dB
- Eingangsimpedanz: 1 MΩ/30 pF
- max. Eingangsspannung: 30 V (AC + DC)
- Zeitbasis: 0,1  $\mu$ s ~ 500 ms pro Division
- Eingangsbereich: 10 mV  $\sim$  3 V/Division
- Anzeigen: TRMS, dBV, dBm, P2P, Arbeitszyklus, Frequenz...
- Aufnahmelänge: 4.000 Samples / Kanal
- $\bullet$  Abtastfrequenz für sich wiederholende Signale: 250 Hz  $\sim$  25 MHz
- Überblick und digitale Bilderfassung

#### **Bode Plotter**

- automatische Synchronisation zwischen Oszilloskop und Generator
- Frequenzbereich: 1 kHz, 10 kHz, 100 kHz, 1 MHz
- Frequenzstart: 10 Hz, 100 Hz, 1 kHz, 10 kHz

TECHNISCHE DATEN UNTER VORBEHALT - DLL für eigene Projekte verfügbar - www.velleman.eu

### Installation des Pc-Lab2000LT

Min. Systemvoraussetzungen:

- Windows<sup>™</sup>2000/XP/Vista (\*)
- VGA-Karte (1024x768 empfohlen)
- 10 MB freier Speicherplatz
- Maus oder ähnlich
- CD- oder CD-/DVD-ROMS-Spieler
- freier USB-Port (1.1 oder 2.0)

Legen Sie das CD-ROM in das CD-ROM-Laufwerk ein.

Durchsuchen Sie das CD-ROM und starten Sie das Programm **SETUP.EXE** wenn die Installation nicht automatisch startet.

Wählen Sie "Install Pc-Lab2000LT".

Ein Wizard lotst Sie durch das vollständige Installationsverfahren. Schnelltasten zur *Pc-Lab2000LT*-Software und die Hilfsdateien werden automatisch generiert.



(\*) **Bemerkung:** Loggen Sie als Administrator ein, um die Software zu installieren. Kontaktieren Sie den Systemverwalter für mehr Information. Siehe auch die ReadME-Datei des installierten Verzeichnisses.

\* Microsoft Windows<sup>™</sup> 2000/XP/VISTA (\*) sind eingetragene Schutzmarken.

Laden Sie die neueste Version auf www.velleman.be herunter und befolgen Sie den Link.

#### Anschluss der Hardware (schließen Sie zuerst alle Programme)

#### Den USB-Treiber installieren

- Verbinden Sie das PCSGU250 mit einem freien USB-Port.
- Befolgen Sie das Installationsverfahren im Bildschirm.
- Wenn Windows eine Windows-Aktualisierung fragt, wählen Sie dann "Not at this time".
- Installieren Sie den Treiber und wählen Sie "D:\PCSGU250Treiber" im CD-ROM. Klicken Sie "Next".
- Bei Meldung "Has not passed Windows logo testing..." klicken Sie "Continue Anyway".
- Nach der Installation des Treibers, kontrollieren Sie, ob den Treiber korrekt im Device Manager installiert wurde.
- Starten Sie den PC wieder wenn nötig.

**Bemerkung:** Im Problemfall, entfernen Sie den USB-Treiber vom Menübalken und installieren Sie "D:\PCSGU250Treiber\PCSGU250Treiber\_WinUSB" nachdem Sie die Hardware wieder verbunden haben.

#### Die Software starten

Lokalisieren Sie die *Pc-Lab2000LT*-Schnelltaste.

Klicken Sie wit um das Hauptprogramm zu starten. Die Nachricht "Loading, please wait" erscheint und die LED leuchtet.

Das Hauptprogramm lädt sofort das Oszilloskop- und Generatordisplay (siehe nachfolgende Seiten). Bei einer Fehlermeldung (z.B. keine Hardware erkannt), trennen Sie, verbinden Sie das USB-Kabel wieder und versuchen Sie wieder. Laden Sie den Demomodus (keine Hardware erforderlich) indem Sie "Options" > "Hardware Setup" > "Demo mode" klicken.

BEMERKUNG: - Das Oszilloskop wird bei der ersten Inbetriebnahme automatisch kalibriert - Die dargestellten Schirmbeispiele können von der Wirklichkeit abweichen.

### Velemen im

### Der Funktionsgenerator

#### Was?

Die meisten Wellenformen sind über einen einzigen Tastendruck verfügbar. Mit den vielen verfügbaren speziellen Funktionen und den Wave-Editor können Sie fast jeden Wellenformtyp kreieren.



#### Wie?

- Klicken Sie auf die gewünschte Wellenform (1).
- Wählen Sie den Frequenzbereich (2).
- Stellen Sie die genaue Frequenz mit dem Schiebebalken (3) ein oder klicken Sie im Frequenzfach (4) und geben Sie die Frequenz ein.
- Regeln Sie Offset (5).
- Regeln Sie die Amplitude (6). (geben Sie die Werte im Offset- und Amplitudefeld ein)
- (7) zeigt eine Vorschau der Wellenform an.

#### Die Taste "More Functions"

Diese Taste verschafft Zugang zu speziellen Wellenformen: beliebigen Wellenformen, Frequency Sweeps, DC und auch der Wellenformbibliothek.

Bemerkung: Mit der Taste "Probe Test" (8) kreiert der Generator ein Signal, das sich zum Kalibrieren von der Oszilloskopsonde ar Einstellung X10 eignet.

| 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| en<br>cy |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| in<br>an | Image: Section 1     None     None |

#### Das Oszilloskop

Mvellemen 1

### Das Oszilloskop



#### Wie?

Was?

- Verbinden Sie den Kreis, den Sie testen möchten, mit dem Eingang (überschreiten Sie die max. Eingangswerte des Oszilloskopes nicht!) oder dem Generatorausgang.
- Starten Sie die Messung mit "Trigger off" (6).
- Drücken Sie "Run" (7).
- Wählen Sie den gewünschten Kanal und volts/div oder drücken Sie "Autoset" (2)
- Wählen Sie die geeignete Time/div-Einstellung (8).

#### Auslösung:

- Wählen Sie den Triggerkanal (5).
- Wählen Sie den Triggerflanke (4).
- Stellen Sie den Trigger auf "ON" (6).
- Stellen Sie das Triggerniveau mit der Schiebetaste (3) ein. Der Pegel wird links im Diagramm dargestellt (1).

### Der Spektrumanalysator



#### Wie?

- Verbinden Sie den Oszilloskopeingang mit dem Kreis, den Sie testen möchten (überschreiten Sie die max. Eingangswerte des Oszilloskopes nicht!) oder verwenden Sie den internen Generatorausgang.
- Analysieren Sie das Signal im Display (siehe vorige Seite).
- Beachten Sie, dass das Signal die Höchstwerte nicht überschreitet und nicht außerhalb des Displays fällt.
- Starten Sie den Spektrumanalysator.
- Drücken Sie "Run" (1).
- Wählen Sie den geeigneten Frequenzbereich damit alle Änderungen im Display sichtbar werden (3).
- Stellen Sie den Kanal und die Volts/div-Einstellung (2) ein wenn gewünscht.

### witement w

### Der Transientenrecorder

#### Was?

Legen Sie ein einmaliges auftretendes Signal fest, nimmt automatisch langsame Änderungen (z.B. Ladezyklus einer Batterie, Temperaturänderungen, usw.) auf oder sucht zyklische Fehler in einem elektronischen Kreis. Der Speicher erlaubt Aufnahmen von einem Jahr!



#### Wie?

- Verbinden Sie den Oszilloskopeingang mit dem Kreis, den Sie testen möchten, oder verwenden Sie den internen Generatorausgang mit niedriger Frequenz.
- Wählen Sie den geeigneten Kanal und die Volts/div-Einstellung (Spannungsbereich) (1).
- Wählen Sie die geeignete Zeit/div-Eintsellung (3).
- Drücken Sie "Run" (2) um die Aufnahme zu starten.
- Drücken Sie "Run" wieder, um die Aufnahme zu stoppen oder klicken Sie "Single" um eine einzige Bildschirmaufnahme zu machen.

Für eine kontinuierliche Aufnahme mit automatischer Speicherung auf Festplatte, wählen Sie "AutoSave Data" unter "File".

#### Bemerkung:

- Die dargestellten Bildschirmbeispiele können während der Aufnahme von der Wirklichkeit abweichen.
- Es ist möglich, dass der Transientenrecorder das Signal bei einer zu niedrigen Zeit/div-Einstellung nicht festlegt.

### Der Bode Plotter

*Was?* Mit diesem Diagramm können Sie einfach Filtermessungen durchführen.



#### Wie?

- Klicken Sie "Circuit Analyser" (1).
- Verbinden Sie den Eingang CH1 vom Oszilloskop mit dem Ausgang vom Kreis, den Sie testen möchten.
- Verbinden Sie den Ausgang des Generators mit dem Eingang vom Kreis.
- Regeln Sie den Pegel des Generatorausgangs (2).
- Regeln Sie den Spannungsbereich (3), den Maßstab, die Frequenzwerte (4), usw.
- Drücken Sie "Start" (5). Das Diagramm wird dargestellt (6).
- Regeln Sie den Spannungsbereich oder den Generatorausgang wenn die Kurve außerhalb des Bereiches fällt.



### Zusätzliche Information (siehe auch Hilfedatei)



Öffnen Sie "Wave Editor" unter "Tools", um Ihre eigene Wellenform zu kreieren. In diesem Beispiel: Pegel 10: 5 Mal, Pegel 50: 20 Mal...

| Maveform Parameters     |            |            |
|-------------------------|------------|------------|
| Amplitude:              | CH1        | CH2        |
| DC Mean                 | 0.63 V     | -0.03 V    |
| Max Max                 | 1.59 V     | 1.47 V     |
| Min                     | -0.28 V    | -1.41 V    |
| Peak-to-Peak            | 1.88 V     | 2.88 V     |
| 🗹 High                  | 1.53 V     | 1.25 V     |
| Low                     | -0.22 V    | -1.19 V    |
| Amplitude               | 1.75 V     | 2.44 V     |
| AC RMS                  | 0.66 V     | 1.19 V     |
| AC dBV                  | -3.66 dBV  | 1.48 dBV   |
| AC dBm                  | -1.44 dBm  | 3.70 dBm   |
| AC+DC RMS               | 0.92 V     | 1.19 V     |
| AC+DC dBV               | -0.757 dBV | 1.48 dBV   |
| AC+DC dBm               | 1.46 dBm   | 3.70 dBm   |
| Timing:                 |            |            |
| Duty Cycle              | 49.5 %     | 50.0 %     |
| Positive Width          | 1.19 ms    | 1.20 ms    |
| V Negative Width        | 1.21 ms    | 1.20 ms    |
| Rise Time               | 0.680 ms   | 0.112 ms   |
| Fall Time               | 0.672 ms   | 0.104 ms   |
| Period                  | 2.40 ms    | 2.40 ms    |
| Frequency               | 0.417 kHz  | 0.417 kHz  |
| Phase                   | 20.0 deg   | -20.0 deg  |
| Select All Unselect All | j          | Close Help |

Öffnen Sie "Waveform Parameters", um ausführliche Parameter anzuzeigen.

| , 110g              | Euroction        | Freq                        | Offset                | Voltage             | Time                | File name   |                                           |
|---------------------|------------------|-----------------------------|-----------------------|---------------------|---------------------|-------------|-------------------------------------------|
| Open<br>Run<br>Exit | 1<br>2<br>4<br>0 | 125.5<br>1000<br>400<br>700 | -4.5<br>2.5<br>0<br>0 | 7.5<br>10<br>8<br>7 | 10<br>5<br>10<br>10 | burst01.lib | Source Data File C Serial Por File Encept |
| Runnin              | <b>J</b> 0       | 0<br>Hz                     | v                     | 8<br>Vpp            | 0<br>Sec            |             |                                           |

Öffnen Sie "Wave Sequence" unter "Tools", um automatisierte Wellenformen zu kreieren.



Stoppen Sie das Oszilloskop. Klicken Sie "History", um das Überblickmenü zu öffnen. Mit dieser Funktion können Sie bis zu 1.000 Signale festlegen. Öffnen Sie den Überblick und speichern Sie ihn, scrollen Sie mit dem Mausrad durch den Überblick. Starten Sie (drücken Sie "Run") das Oszilloskop aufs Neue.



Sie können das Diagramm mit Text und Parametern vervollständigen.

Klicken Sie das Diagramm mit der rechten Maustaste, um das Textfenster zu öffnen und geben Sie den gewünschten Text ein.

### Velemen im

### Introducción: El mundo del Pc-Lab2000LT

iUn pequeño laboratorio USB completo! Software PcLab2000-LT potente para osciloscopio de dos canales, analizador de espectro, grabador de señales transitorias, generador de funciones y Bode plotter. Editor de ondas (signal wave editor) incorporado y secuenciador automatizado por fichero o entrada PC.

#### Informaciones generales

- puntos de referencia (marcadores) para amplitud/tensión y frecuencia/tiempo
- conexión en la entrada: CC, CA y GND
- resolución 8 bits
- es posible guardar la figura en la pantalla y los datos
- alimentación por puerto USB (500mA)
- dimensiones : 205 x 55 x 175 mm

#### Analizador de espectro

- rango de frecuencia: 0 .. 120 Hz ~ 12 MHz
- escala de tiempo lineal o logarítmica
- principio de funcionamiento: FFT (Fast Fourier Transform)
- resolución FFT: 2048 líneas
- canal de entrada FFT: CH1 o CH2
- función zoom

#### Grabador de señales transitorias

- escala de tiempo: 20 ms/div ~ 2000 s/div
- tiempo de grabación máx. : 9,4 h/pantalla
- almacenamiento automático de datos
- almacenamiento automático durante más de un año
- número máx. de muestreos: 100/s
- número mín. de muestreos: 1 muestreo/20s

#### Generador de funciones

- $\bullet$  rango de frecuencia : senoidal de 0,005Hz  $\sim$  1MHz
- señal triangular y cuadrada de 0,005Hz ~ 500kHz
- extensa biblioteca con formas de ondas
- amplitud: 100mVpp  $\sim$  10Vpp @ 1kHz//600Ω/ impedancia de salida: 50Ω

#### Osciloscopio

- ancho de banda: 2 canales CC a 12MHz ± 3dB
- impedancia de entrada: 1ΩM/30 pF
- tensión de entrada máx.: 30V (CA + CC)
- base de tiempo: 0,1µs ~ 500ms por división
- rango de entrada: 10mV ~ 3V por división
- lectura: TRMS, dBV, dBm, P2P, ciclo de trabajo, frecuencia...
- duración de la grabación: 4.000 muestreos/canal
- $\bullet$  frecuencia de muestreo para señales repetitivas: 250Hz  $\sim$  25MHz
- resumen y función de captura de imagen digital

#### Bode plotter

- sincronización automática entre el osciloscopio y el generador
- rango de frecuencia: 1kHz, 10kHz, 100kHz, 1MHz
- frecuencia de arranque: 10Hz, 100Hz, 1kHz,10kHz

ESPECIFICACIONES BAJO RESERVA DE MODIFICACIONES - DLL disponible para desarrollos propios - www.velleman.eu

### Instalar el Pc-Lab2000LT

#### Exigencias mínimas del sistema

- Windows<sup>™</sup> 2000/XP/Vista (\*)
- tarjeta de vídeo VGA (1024x768 recomendado)
- espacio libre disco duro 10 MB
- ratón o similar
- lector de CD o CD/DVD
- puerto USB (1.1 ó 2.0)

Introduzca el CD en el reproductor.

Si el CD no inicia automáticamente, abra el directorio del CD v eiecute el fichero "SETUP.EXE"

Seleccione "Pc-I ab2000| T.

El asistente de instalación le guiará en el procedimiento de instalación. Los ataios al software Pc-Lab2000LT y los ficheros de ayuda se aeneran automáticamente.



**Nvellemen**t

(\*) Nota: Entre en el sistema como administrador para completar el procedimiento de instalación o contacte con su administrador de sistemas para más informaciones. Véase también el fichero "ReadME" en la carpeta instalada.

\* Microsoft Windows<sup>™</sup> 2000/XP/VISTA (\*) son marcas registradas.

Descargue la última versión en www.velleman.be y siga el enlace "Descargas".



### Instalar el hardware (cierre todos los programas antes de continuar)

#### Instalar el driver USB

- Conecte el PCSGU250 a un puerto USB libre.
- Siga el procedimiento de instalación visualizado en la pantalla.
- Si Windows<sup>®</sup> le propone actualizar su versión de Windows<sup>®</sup>, seleccione "Not at this time".
- Instale el driver y seleccione "D:\PCSGU250Driver" en el directorio del CD. Haga click en "Next".
- Si Windows<sup>®</sup> indica "Has not passed Windows logo testing.... " haga click en "Continue Anyway".
- Después de haber instalado el driver, controle si el driver ha sido instalado de manera correcta en el Device Manager.
- Vuelva a iniciar el ordenador si fuera necesario.

**Nota:** Een caso de problemas, quite el driver USB de la barra de tarreas e instale "D:\PCSGU250Driver\PCSGU250Driver\_WinUSB" después de haber conectado el hardware de nuevo.

#### Ejecutar el software

Localizar el atajo "*Pc-Lab2000LT*".

Haga click en el icono para weiter el software. El mensaje "loading, please wait" se visualiza. Después de que el software está cargado, el LED se ilumina.

El software visualia automáticamente el osciloscopio y el generador de funciones (página siguiente). En caso de error (unidad no detectada), desconecte y vuelva a conectar el cable USB, y vuelva a intentar. Para entrar en el modo de demonstración (uso sin hardware), haga click en "Options", "Hardware Setup" y luego en "Demo Mode".

Nota: - Es posible que las capturas de pantalla difierran de la réalidad. - el osciloscopio se calíbrará automáticamente durante la primera puesta en marcha



### El generador de funciones

#### ŻQué ?

Las ondas más comunes están disponibles por un solo botón. Es posible crear cualquier tipo de onda con las funciones especiales y el editor de ondas.



#### • żCómo?

- Haga click en la forme de onda deseada (1).
- Seleccione el rango de frecuencia (2).
- Determine la frecuencia con el conmutador deslizante (3) o haga click en el campo de la frecuecia (4) e introduzca la frecuencia.
- Ajuste el offset (5).
- Ajuste la amplitud (6). (introduzca los valores al hacer click en el campo "Offset" y "Amplitude")
- El diagrama (7) visualiza una simulación de la onda.

#### Más funciones "More Funct."

El botón "More Funct." no sólo le da acceso a las ondas especiales (ondas arbitrarias, exploraciones de frecuencia, CC) sino también al directorio de formas de onda.

Nota: El botón "Probe Test" (8) permite al generado producir una señal de salida para calibrar la sonda del oscilloscopio en X10.



8

### El osciloscopio :

*¿Qué?* Es un osciloscopio digital 1 de almacenamiento completo y fácil de utilizar.



#### żCómo?

- Conecte el circuito que quiere probar a la entrada del osciloscopio (iNo sobrepase el valor de entrada máx. del osciloscopio!) o la salida del generador.
- Mida con "Trigger Off" (6).
- Haga click en el canal y volts/div, o haga click en "Autoset" (2).
- Seleccione temps/div (8).

#### Disparo:

- Seleccione el canal de disparo (5).
- Seleccione el flanco de disparo (4).
- Haga click en "Trigger On" (6).
- Ajuste el nivel con el conmutador deslizante (3). El nivel se visualiza en la parte izquierda del diagrama (1).



### El analizador de espectro

żQué?

Permite visualizar el espectro de frecuencia de una señal con un análisis FFT (Fast Fourier Transform).



#### How ? :

#### żCómo?

- Conecte la entrada del osciloscopio al circuito que quiere probar (no sobrepase los valores máx. de entrada del osciloscopio) o utilice la salida del generador interno.
- Analice la señal en la pantalla del osciloscopio (véase la página anterior).
- Asegúrese de que la señal no sobrepase el valor máx. de la panatlla.
- Inicie el analizador de espectro.
- Pulse "Run" (1).
- Seleccione el rango de frecuencia adecuado para que se visualicen todos los cambios en la pantalla (3).
- Seleccione el canal y volts/div si fuera necesario (2).

### **Welement**

### El grabador de señales transistorias

#### żQué?

Grabe automáticamente eventos ocasionales y modificaciones lentas, p.ej. el ciclo de carga de una batería, la evolución de la temperatura, etc. o busque los errores cíclicos en un circuito electrónico. Los datos se guardan automáticamente en la memoria. iEl Pc-Lab2000LT le permite grabar los datos durante 1 año!



#### żCómo?

- Conecte la entrada al circuito que quiere probar (o utilice un generador interno a baja frecuencia).
- •Seleccione el canal y volts/div (o el rango de tensión) adecuados (1).
- Seleccione tiempo/división (3).
- Pulse "Run" (2) para grabar.
- Vuelva a pulsar "Run" para interrumpir la grabación o pulse "Single" para efectuar una medición de pantalla sencilla.

Seleccione "AutoSave Data" en el menú "File" para grabar en el modo continuo con almacenamiento automático en disco duro.

#### Nota:

- Durante la grabación, es posible que las pantallas defieran de la medición actual
- La interacción entre los dos muestreos no se medirá si el valor temps/div seleccionado es demasiado bajo.



### El Bode Plotter

#### ŻQué?

Es posible medir el nivel de amplificación o de filtrado gracias al Bode Plotter incorporado.



#### żCómo?

- Abra la pantalla "Circuit Analyser" (1).
- Conecte la entrada del canal CH1 del osciloscopio a la salida del circuito que quiere probar.
- Conecte la salida del generador a la entrada del circuito.
- Ajuste la saldia del generador (2) a un nivel adecuado.
- Ajuste el Bode Plotter en un nivel de "V Range" (3), "Vertical Scale", "Frequency Range" y "Frequency Start" (4)...
- Pulse "Start" (5) y no sobrepase los valores de la pantalla de medición (6).
- Ajuste el valor bajo "V Range" o el nivel de salida del generador si la señal está fuera del rango de la pantalla.

### Informaciones adicionales (véase los ficheros deayudas)



Abra el editor "Wave Editor" bajo "Tools" para generar su propia forma de onda. En este ejemplo: nivel 10: 5 veces, nivel 50: 20 veces..

| Amplitude:              | CH1        | CH2        |
|-------------------------|------------|------------|
| DC Mean                 | 0.63 V     | -0.03 V    |
| Max Max                 | 1.59 V     | 1.47 V     |
| Min                     | -0.28 V    | -1.41 V    |
| Peak-to-Peak            | 1.88 V     | 2.88 V     |
| ✓ High                  | 1.53 V     | 1.25 V     |
| Low                     | -0.22 V    | -1.19 V    |
| Amplitude               | 1.75 V     | 2.44 V     |
| AC RMS                  | 0.66 V     | 1.19 V     |
| AC dBV                  | -3.66 dBV  | 1.48 dBV   |
| AC dBm                  | -1.44 dBm  | 3.70 dBm   |
| AC+DC RMS               | 0.92 V     | 1.19 V     |
| AC+DC dBV               | -0.757 dBV | 1.48 dBV   |
| AC+DC dBm               | 1.46 dBm   | 3.70 dBm   |
| Timing:                 |            |            |
| Duty Cycle              | 49.5 %     | 50.0 %     |
| Positive Width          | 1.19 ms    | 1.20 ms    |
| Vegative Width          | 1.21 ms    | 1.20 ms    |
| Rise Time               | 0.680 m*   | 0.112 ms   |
| Fall Time               | 0.672 m*   | 0.104 ms   |
| Period                  | 2.40 ms    | 2.40 ms    |
| Frequency               | 0.417 kHz  | 0.417 kHz  |
| Phase                   | 20.0 deg   | -20.0 deg  |
| Select All Unselect All | )          | Close Help |

Abra la pantalla "Waveform Parameters" para visualizar los parámetros de la forma de onda.



Abra la pantalla "Wave Sequence" bajo "Tools" para crear formas de onda automizadas.



Pare el osciloscopio. Haga clic en "History" para abrir un menú. Guarde y abra el fichero con el resumen, y muévase con la rueda del ratón. Active el osciloscopio al hacer click en "Run".



Es posible añadir un texto y parámetros en el diagrama.

Haga click en el diagrama con el botón derecho del ratón para abrir una pantalla con texto.

# Pc-Lab 2000 LT<sup>TM</sup> ELECTRONICS MADE EASY

GETTING STARTED / INSTRUCTIONS EN BREF / RATGEBER / INSTRUCCIONES BREVES



PCSGU250



| Belgium [head office] | Velleman Components   | +32(0)9 389 94 03   |
|-----------------------|-----------------------|---------------------|
| France                | Velleman Electronique | +33(0)3 20 15 86 15 |
| Netherlands           | Velleman Components   | +31(0)76 514 7563   |
| USA                   | Velleman Inc.         | + (817)284 - 7785   |
| Spain                 | Velleman Components   | +32 95 412 68 00    |



500.00 Hz

De 08 -014-

#### www.velleman.eu